Structure-switching signaling aptamers.

نویسندگان

  • Razvan Nutiu
  • Yingfu Li
چکیده

Aptamers are single-stranded nucleic acids with defined tertiary structures for selective binding to target molecules. Aptamers are also able to bind a complementary DNA sequence to form a duplex structure. In this report, we describe a strategy for designing aptamer-based fluorescent reporters that function by switching structures from DNA/DNA duplex to DNA/target complex. The duplex is formed between a fluorophore-labeled DNA aptamer and a small oligonucleotide modified with a quenching moiety (denoted QDNA). When the target is absent, the aptamer binds to QDNA, bringing the fluorophore and the quencher into close proximity for maximum fluorescence quenching. When the target is introduced, the aptamer prefers to form the aptamer-target complex. The switch of the binding partners for the aptamer occurs in conjunction with the generation of a strong fluorescence signal owing to the dissociation of QDNA. Herein, we report on the preparation of several structure-switching reporters from two existing DNA aptamers. Our design strategy is easy to generalize for any aptamer without prior knowledge of its secondary or tertiary structure, and should be suited for the development of aptamer-based reporters for real-time sensing applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering DNA aptamers and DNA enzymes with fluorescence-signaling properties*

Single-stranded DNA molecules with ligand-binding ability and catalytic function, referred to as DNA aptamers and DNA enzymes, respectively, are special DNA sequences isolated from random-sequence DNA libraries by “in vitro selection”. These two new classes of artificial DNA molecules have the potential of being used as molecular tools in a variety of innovative applications ranging from biosen...

متن کامل

Rational design of a structure-switching DNA aptamer for potassium ions

Structure-switching molecules provide a unique means for analyte detection, generating a response to analyte concentration through a binding-specific conformational change between non-binding and binding-competent states. While most ligand-binding molecules are not structure switching by default, many can be engineered to be so through the introduction of an alternative non-binding (and thus no...

متن کامل

Re-engineering aptamers to support reagentless, self-reporting electrochemical sensors.

Electrochemical aptamer-based (E-AB) sensors have emerged as a promising and versatile new biosensor platform. Combining the generality and specificity of aptamer-ligand interactions with the selectivity and convenience of electrochemical readouts, this approach affords the detection of a wide variety of targets directly in complex, contaminant-ridden samples, such as whole blood, foodstuffs an...

متن کامل

High-Throughput Bead-Based Identification of Structure-Switching Aptamer Beacons

We describe a new platform to identify structure-switching DNA beacon aptamers, which detect small molecules in a specific manner. By clonally amplifying a DNA library designed to fluoresce in response to binding events onto microbeads, aptamer beacons can be selected by stringent fluorescence-assisted sorting. We validated this method by isolating known and novel anti-steroid aptamers from two...

متن کامل

A Method for Selecting Structure-switching Aptamers Applied to a Colorimetric Gold Nanoparticle Assay

Small molecules provide rich targets for biosensing applications due to their physiological implications as biomarkers of various aspects of human health and performance. Nucleic acid aptamers have been increasingly applied as recognition elements on biosensor platforms, but selecting aptamers toward small molecule targets requires special design considerations. This work describes modification...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 125 16  شماره 

صفحات  -

تاریخ انتشار 2003